
Compatibility Issue Detection for Android Apps
Based on Path-Sensitive Semantic Analysis

Sen Yang∗‡, Sen Chen†‡, Lingling Fan§¶, Sihan Xu§, Zhanwei Hui∥, and Song Huang∗¶
∗ Command and Control Engineering College, Army Engineering University of PLA, China

†College of Intelligence and Computing, Tianjin University, China
§College of Cyber Science, Nankai University, China

∥Academy of Military Science, China

Abstract—Android API-related compatibility issues have be-
come a severe problem and significant challenge for app devel-
opers due to the well-known Android fragmentation issues. To
address this problem, many effective approaches such as app-
based and API lifetime-based methods have been proposed to
identify incompatible API usages. However, due to the various
implementations of API usages and different API invoking paths,
there is still a significant weakness of existing approaches, i.e.,
introducing a massive number of false positives (FP) and false
negatives (FN). To this end, in this paper, we propose PSDroid, an
automated compatibility detection approach for Android apps,
which aims to reduce FPs and FNs by overcoming several
technical bottlenecks. Firstly, we make substantial efforts to carry
out a preliminary study to summarize a set of novel API usages
with diverse checking implementations. Secondly, we construct a
refined API lifetime database by leveraging a semantic resolving
analysis on all existing Android SDK frameworks. Based on
the above two key phases, we design and implement a novel
path-sensitive semantic approach to effectively and automatically
detect incompatibility issues. To demonstrate the performance, we
compared with five existing approaches (i.e., FicFinder, ACRYL,
CIDER, IctAPIFinder, and CID) and the results show that
PSDroid outperforms existing tools. We also conducted an in-
depth root cause analysis to comprehensively explain the ability
of PSDroid in reducing FPs and FNs. Finally, 18/30 reported
issues have been confirmed and further fixed by app developers.

Index Terms—Compatibility detection, Android app, Path-
sensitive analysis, Semantic analysis

I. INTRODUCTION

Mobile applications (apps) have become imperative to peo-
ple’s daily life. The diverse functionalities of Android apps
such as accessing the Internet, chatting, and shopping make
them inevitable [1], [2]. To facilitate the development of
Android apps, Google releases the software development kit
(SDK) [3] that provides Android application programming in-
terfaces (APIs). App developers can customize and implement
different functions by leveraging the APIs supported by the
released SDKs. Yet, along with the high-frequency updates
of the Android operating system ranging from Android 1.0
in 2008 to Android 13.0 in 2022 [4], these SDK versions
have been updated accordingly from API level 1 to API

‡ These two authors contributed equally to this work.
¶ Lingling Fan and Song Huang are the corresponding authors (Emails:

linglingfan@nankai.edu.cn, huangsong@aeu.edu.cn).

level 33. Unfortunately, any evolution of the APIs may cause
compatibility issues due to the fragmentation problem of
Android [3], [5], [6], which may inconvenience end-users and
significantly degrade user experience [7], [8].

To mitigate it, many approaches have been proposed to
identify incompatibility issues in Android apps [5], [9]–[20],
which can be divided into two categories: app-based compat-
ibility issue detection [9], [12]–[15] and API lifetime-based
compatibility issue detection [5], [10], [11], [16]. The former
methods (e.g., FicFinder [9] and ACRYL [13], [14]) only focus
on certain types of issues or APIs, because they are usually
designed based on some pre-knowledge obtained by manual
analysis. Therefore, compared with app-based methods, API
lifetime-based methods achieve more promising results, owing
to a more complete and comprehensive API lifetime extracted
through modeling all the Android API frameworks, where the
lifetime of an API means the time span of it being introduced
and deprecated during SDK evolution. For example, Li et
al. [10] proposed CID, a state-of-the-art approach using an
Android API lifetime modeling from Android frameworks 1
to 25. CID utilizes the modeled API lifetime to analyze the
changes in the history of Android APIs and further detects
compatibility issues through static analysis.

Despite the progress made to alleviate the compatibility
problem, there are still many deficiencies in existing solu-
tions, caused by neglecting the context semantics of checking
patterns of incompatible API usages, leading to a high False
Positive (FP) rate and False Negative (FN) rate. (1) High
FP Rate. ① Given the fact that the implementation of API
usages has several variants, not just the most basic one
(e.g., if (Build.VERSION.SDK INT >= 28) { invokeA(); }),
existing approachess [9]–[19] neglect these different imple-
mentations and mistake them for compatibility issues, causing
false alarms. ② Besides, due to the inconsistency between
the declaration in each SDK and that in the Android docu-
mentation [21], existing approaches [10]–[16], [20] relying on
only the Android documentation or declaration in SDK cannot
accurately extract the lifetime of APIs. ③ Thirdly, existing
approaches [9], [10], [12]–[19] consider the incompatible API
usages in third-party packages as true positives. However,
some of them are neither directly nor indirectly invoked by the
main packages of the apps. In other words, such incompatible

257

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00033

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

33

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

APIs would not cause incompatible issues to the target app.
(2) High FN Rate. ① Existing methods [10], [13], [14], [16]
consider an API to be used without incompatibility issues once
a basic check is found in one of the invoking paths, however,
there may be issues in other paths or the semantics of the check
is incorrect. ② The inaccurate lifetime and check patterns of
the above mentioned APIs can not only introduce FPs, but
also cause FNs. Our goal of this paper is to reduce FPs and
FNs, and improve the detection practicality.

To this end, we propose PSDroid, a novel approach to de-
tecting API compatibility issues in Android apps. Specifically,
we firstly inspected compatibility checks in 645 apps provided
by [20], [22], and summarized four typical check patterns
(i.e., direct check, ternary expression check, static field check,
and try catch check). By proposing a path-sensitive semantic
analysis, PSDroid takes into account all the check patterns
and invoking paths of API usages. From the perspective
of API lifetime modeling, three new features introduced by
Kotlin [23] in the concurrent frameworks from 27 to 31 have
been considered to construct a more accurate and complete set
of API lifetime.

To evaluate the detection ability of PSDroid, we first build
a ground-truth dataset containing 12 apps covering different
types of compatibility issues and compare it with two state-
of-the-art API lifetime-based approaches (i.e., CID [10] and
IctAPIFinder [11]). The result shows PSDroid outperforms
CID and IctAPIFinder, with precisions 100% vs. 62.5% vs.
62.5%, and recalls 100% vs. 62.5% vs. 62.5%. To further
demonstrate the performance in reducing false positives and
false negatives, we compared PSDroid with three app-based
methods (i.e., FicFinder [9], CIDER [12], and ACRYL [13],
[14]) and two lifetime-based approaches (i.e., CID [10] and
IctAPIFinder [11]) on 645 real-world apps, followed by an in-
depth root cause analysis to highlight the benefits of PSDroid.
The results demonstrate PSDroid can sharply reduce FPs
(reducing 96.6% and 71.4% potential false positives in CID
and IctAPIFinder, respectively) and FNs (22.1% issues only
detected by PSDroid). Finally, 30 detected compatibility issues
have been reported to the developers, and 18 of them have been
confirmed or fixed. The fix results and the positive feedback
from app developers demonstrate the practicality of PSDroid.

In summary, we make the main contributions as follows.
• We are the first to systematically summarize four types of

API usage check patterns (i.e., direct check, ternary expression
check, static field check, and try catch check), which have a big
influence on the detection of Android incompatibility issues.

• Several new features such as annotation have been augmented
to improve the accuracy of modeling API lifetime (ranging
from API level 1 to 31) by employing API semantic analysis.

• We design and implement a path-sensitive approach with
semantic analysis, named PSDroid, which leverages the newly-
summarized API usage check patterns and a refined API
lifetime database to effectively detect compatibility issues.

• We conducted comprehensive experiments to demonstrate the
effectiveness of PSDroid and better performance compared
with five existing tools in significantly reducing false positives

and false negatives. 18/30 reported issues have been acknowl-
edged and fixed.

II. RELATED WORK

A. App-based Compatibility Issue Detection

Wei et al. [9] proposed FicFinder to detect compatibility
issues by modeling each pattern of issues as a pair of issue-
inducing APIs and issue-triggering context (i.e., an API-
context pair). Huang et al. [12] presented CIDER to detect
the callback compatibility issues by constructing a callback
invocation protocol inconsistency graph (i.e., PI-GRAPH), so
as to capture the structural invocation protocol inconsistencies
(causes of callback compatibility issues) across API levels
occurring in an app. Scalabrino et al. [13], [14] extracted
conditional API usages (i.e., CAUs) of handling evolution-
induced API compatibility issues from 688 apps, and proposed
ACRYL to detect suspicious compatibility API usages in a
given app by using the most frequent CAUs. Xia et al. [15]
proposed a machine learning-based approach named RAPID
to investigate whether developers handled incompatible API
invocation with a replacement implementation.

B. API lifetime-based Compatibility Detection

McDonnell et al. [5] conducted an empirical study to ana-
lyze the usage of fast-evolving APIs (e.g., changed and added),
and they unveiled faster-evolving APIs are more vulnerable.
Li et al. [10] proposed CID to model the lifetime of APIs
based on the Android SDK frameworks. They record the
API usage information of a given app and extract the usages
causing evolution-induced compatibility issues. Similarly, He
et al. [11] presented IctAPIFinder to detect API compatibility
issues by using a context-sensitive data-flow method to capture
the reachable Android OS versions for each API in a given
app. Different from the framework-based methods of extract-
ing API lifetime, Mahmud et al. [16] investigated the history
versions of API difference reports collected from the Android
documentation to model the lifetime of framework APIs. They
implemented ACID, which uses a self-built miniature lexer and
parser to locate incompatible API usages and generates class
hierarchy to locate callback-related compatibility issues. Pei
et al. [20] conducted a comparison study of the state-of-the-
art compatibility issue detection tools (i.e., CIDER, FicFinder,
IctAPIFinder, and CID). They found that lifetime-based tools
yield more incompatibility issues than App-based tools, and
there remain several limitations, i.e., outdated adapting to the
rapid evolution of APIs, lack of characterizing semantics-
changing APIs, etc.

C. Automated Compatibility Issue Repair

Besides the detection methods, some studies have been
proposed to automatically repair incompatible APIs. Fazzini
et al. [24] summarized fixes based on 15 apps and proposed
AppEvolve to automatically update incorrect API usages by
matching the summarized fixes. Haryono et al. [17] further
improved AppEvolve and implemented CocciEvolve, which
used the after update examples to perform API updates and

258

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Related work summarization. •: app-based detection; ◦: API lifetime-based detection.

Category Published
time Tools Type APIs that can cause compatibility issues Semantic

Analysis
Path-sensitive

Analysis

Detection

2013 McDonnell et. al. [5] ◦ Android SDK framework level 1 and API difference reports % %

2016 FICFINDER [9] • 5 apps of frequent code revisions % %

2018 CID [10] ◦ Android SDK framework level 1 to 25 % %

2018 ICTAPIFINDER [11] ◦ Android SDK framework level 10 to 27 % "

2018 CIDER [12] • Android documentations and 100 compatibility issues % %

2019 ACRYL [13], [14] • 11,863 snapshots of 668 apps % %

2020 RAPID [15] • 300,000 apps % %

2021 ACID [16] ◦ Google API difference reports % %

2022 LITERATURE REVIEW [20] ◦ Replicability and comparison of four detection tools % "

N.A. PSDROID ◦ Android SDK framework level 1 to 31 " "

Repair

2019 APPEVOLVE [24] • 15 real-world apps % %

2020 COCCIEVOLVE [17] • 10 most commonly-used APIs % "

2021 ANDROEVOLVE [18] • 20 deprecated Android APIs % "

2022 REPAIRDROID [19] • 24 app compatibility issues % %

meanwhile provided semantic and configurable update scripts.
Additionally, they extended CocciEvolve by providing An-
droEvolve [18], which addressed the defects in CocciEvolve
with data-flow analysis and variable name denormalization. In
a concurrent work, Zhao et al. [19] proposed a generic patch
description language to create fix templates for multiple types
of compatibility issues (e.g., OS-induced, device-specific).
They implemented RepairDroid, which leverages 22 manually
summarized fix templates with control-flow and data-flow
analysis to locate and repair incompatible API usages.

Finally, we highlight the main differences between our
work (i.e., PSDroid) and existing studies in Table I. The
column “Semantic Analysis” refers to whether the tool an-
alyzes different semantic representations of constraints in dif-
ferent API usage check patterns. The column “Path-sensitive
Analysis” refers to whether all paths that are relevant to the
incompatible API usages are taken into consideration. From
the last two columns, we can see that none of the existing
methods analyzed different implementations of usage patterns
when checking the API usages for their detection or repair
tasks, which could lead to many false alarms in practice,
while PSDroid leverages a semantic analysis method that is
sensitive to various API usage check patterns when detecting
compatibility issues. Meanwhile, most of these approaches
investigated the incompatible APIs by string matching but ne-
glected the impact of multiple paths. This limitation may cause
false positives for compatibility issue detection and make it
difficult for developers to locate and verify the potential issues.
Although IctAPIFinder leveraged a path-sensitive analysis, it
only focused on a simple API usage check pattern (i.e., direct
check) instead of all the implementations of check patterns
summarized in § IV-B.

III. MOTIVATING EXAMPLE

Since the Android SDK is evolving, so as the corresponding
APIs, some APIs are deprecated or introduced in new SDK
versions. Therefore, if an app uses deprecated APIs or uses
APIs that have not been introduced into the used SDK version,
the app may have incompatibility issues. For example, Fig. 1
shows the simplified code snippet of an app, GPSTest [25],
where the class Utils [26] is used to check the runtime
SDK versions. In this app, the minimum and maximum SDK
versions to run it are set to 18 and 31, respectively (Line

Fig. 1: Code snippet of Utils with incompatibility issues.

1). The incompatible API is getRangeState() because it was
introduced in SDK version 24, while the minimum SDK
version to run this app is 18. Hence, if this app is executed
on a device under SDK version 24, it should not invoke
getRangeState() during runtime, otherwise, it would throw a
NoSuchMethodError exception, causing the crash or defects.

Specifically, the example declares one static method (i.e.,
hasGrantedPermissions at Line 3). In the correct invoking path
(Lines 7-9), the app first checks whether the runtime SDK
version is greater than or equal to 28 (i.e., SDK INT >= 28) in
a ternary expression, and invokes the method getRangeState()
if it is true. In this case, it will not cause incompatibility
issues since it already checks for the runtime SDK version
and ensures it invokes getRangeState() under an appropriate
situation. While in the incorrect invoking path (Lines 11-13),
the app checks whether the runtime SDK version is less than
28 (SDK INT < 28) by retrieving the specific global variable,
and invokes getRangeState() if it is true. In this case, the
runtime SDK may be less than 24, then the app invokes a
non-existent API, causing an incompatibility issue.

From this example, the challenges can be summarized as:
(1) The extraction of constraints for different check patterns
across different classes and methods; (2) Semantic analysis
of constraints in each API usage path considering the API
lifetime. The first challenge is reflected by extracting the
constraints of hasGrantedPermission() and analyzing which
pattern it belongs to across all the classes’ static methods. The
second challenge is demonstrated by extracting the paths call-
ing specific APIs (e.g., Util.hasGrantedPermission → onGnss-
Received()), and conducting a semantic analysis of the con-

259

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

Path Localization

Path Extraction

Path-sensitive Semantic Analysis

Path-Sensitive Analysis

Android SDK
Frameworks

Resolved API Usages

API Compatibility
Issue Detection

Issue Report
IssuesAPI Lifetime Modeling Refined API

Lifetime

API Usage Analysis

Lifetime Modeling Based on API Semantic Analysis

Fig. 2: An overview of PSDroid.

straints along each path and the lifetime of the involved API
(i.e., getRangeState) to determine the incompatibility. In fact,
it is also challenging to accurately model the lifetime of APIs
due to different check implementations and different Android
versions. However, existing techniques only check whether
the runtime SDK version is checked directly in the if-clause,
e.g., if(Build.VERSION.SDK INT >= 24) {invokeA();}, while
neglecting other semantic condition checks or other paths,
causing false alarms.

IV. APPROACH

In this paper, we propose PSDroid, a path-sensitive approach
with semantic analysis, to automatically detect incompatible
API usages in Android apps. Fig. 2 presents an overview of
PSDroid. It takes an apk as input, and outputs compatibility
issues and incompatible invoking paths. PSDroid contains four
key phases: (1) Path Localization, which first generates the
method call graph and then analyzes the call graph to extract
all paths relevant to API usages; (2) Path-sensitive Seman-
tic Analysis, which considers various patterns of conditional
checks in terms of API usages, and extracts all paths that may
cause incompatibility issues; (3) lifetime Modeling Based on
API Semantic Analysis, which refines the lifetime of each API
and constructs a database through summarizing 4 types of API
updates in SDK versions from 1∼31; (4) API Compatibility
Issue Detection, which evaluates all the resolved paths of API
usages by utilizing the refined API lifetime database to detect
incompatible API usage paths.

A. Path Localization

In this section, we aim to extract all the paths that invoke
framework APIs.

1) Call Graph Generation: PSDroid first decompiles the
input apk and extracts the call graph using SOOT [27], a static
analysis framework for Android. The call graph is defined as
a tuple G = (M, E), where M is a set of methods of the apk,
and E is a set of directed edges connecting two methods. Since
Android apps have multiple entry points (e.g., UI interactions,
callbacks), we used FlowDroid [28], a precise inter-procedural
control-flow graph app analysis framework, to recognize them
and generate an individual dummy main method to connect
them in G. From the graph G, all the method-invoking
sequences (i.e., invoking paths) can be extracted for further
incompatibility analysis.

2) Path Extraction: Based on the generated call graph,
PSDroid aims to distinguish the APIs used by the main
packages or third party libraries in the app, to further check
whether it could cause a runtime incompatibility issue. Before

localizing APIs, PSDroid first constructed a database and
collected the APIs that need to be localized by analyzing
Android documentation [21]. Here, the collected APIs refer to
the framework APIs defined in Android. It then traversed the
method call graph to localize the used APIs by string-matching
with the APIs in the database. For example, in Fig. 1, the
API that PSDroid identified and localized is getRangeState()
(Lines 9, 16), which is directly or indirectly invoked by three
methods: isCarrierSupported() (Line 7), onGnssReceived()
(Line 11), and writeGnssToFile() (Line 14).

Based on the extracted APIs in the call graph, PSDroid
starts from each API (api), and performs a backward analysis
to extract the methods that directly or indirectly invoke each
Android API. Those methods and api form a sub-graph that
shares the same end node (api). From the sub-graph, we
extract all the method sequences (i.e., paths) that reach api,
denoted by Pi = {mi1 → mi2 → mi3 → · · · → api} , i ∈ n,
where n is the number of paths in the sub-graph. During path
extraction from the sub-graph, there might be recursive calls,
making the paths to be infinite. To address it, PSDroid records
all the visited methods in each path, and stops extracting paths
if the path is with repeated nodes.

Since Android apps are event-driven, some callback meth-
ods (i.e., event handler) are triggered by user-events without
explicitly being called by other methods. Therefore, mi1, the
starting node of a path, may be an event handler. Besides,
mi1 might also be a deprecated method, which sometimes
occurs due to frequent revisions of apps. Taking the example
in Fig. 1 for illustration, two paths are finally extracted as the
paths that invoke the API getRangeState() (Lines 9, 16). The
first path is “isCarrierSupported() → getRangeState()”, while
the second path is “onGnssReceived() → writeGnssToFile()
→ getRangeState()”. Note that, there may be third-party
packages or other supporting libraries that eventually invoke
framework APIs, however without being invoked by the main
package, i.e., hanging libraries. In this case, we ignore such
API usages in order to reduce irrelevant incompatibility API
usages. Therefore, we filter out such paths from the extracted
paths, and obtained the paths relevant to the app by checking
whether the API is directly or indirectly invoked by a method
in the main package. Finally, these paths will be further
analyzed in the next section to determine whether there exist
incompatibility issues when invoking the specific APIs.

B. Path-sensitive Semantic Analysis

In this section, for each extracted path, we aim to identify
the patterns to invoke each API. To achieve it, we first

260

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Four typical implementations of API usage check patterns.

summarize the usage patterns of invoking APIs in different
SDK levels and further check potential incompatibility issues.

1) API Usage Check Pattern Analysis: To be aware of
the context semantics of API-related variables, we inspected
the compatibility checks in 1,375 real-world apps collected by
[22]. This dataset consists of Github commits related to the
revisions of SDK INT value, which contains various types
of API usage check patterns in real-world apps. We then
summarize four typical implementations of API usage check
patterns, which are often used to avoid evolution-induced
incompatibility issues. We spent 2 person-months analyzing
API usage check patterns and summarized four patterns as
shown in Fig. 3.
Pattern 1: Direct check. The most common practice is to
check the value of SDK INT (i.e., the runtime SDK version)
directly in the “if” statement. In Fig. 3, Telegram FOSS
[29] checks the runtime SDK version in the “if” statement
(“if (Build.VERSION.SDK_ INT >= 23)” at Line 3)
before invoking the API getBufferSizeInFrames(). In fact, this
API is introduced to the Android framework in API level 23,
thus, without the constraint (SDK INT >= 23), it would cause
incompatibility issues when invoking the API.
Pattern 2: Ternary expression check. Apart from checking
the runtime SDK version in the if statement, developers can
also use ternary expressions as the constraint to invoke the
specific API. This pattern is commonly used where the return
value of the target API is a parameter of another method. In
Fig. 3, a ternary expression (Line 8) is used as the constraint
to determine the API that should be invoked at runtime. If it is
satisfied at runtime, it would call MATCH ALL(), otherwise,
GET DISABLED COMPONENTS() would be called.
Pattern 3: Static field check. The third usage pattern is to
obtain the runtime SDK version check by defining a static
variable or a static method, and the runtime SDK version
(i.e., the value of SDK INT) is indirectly checked in the
variable or the method. For example, in Fig. 3 the API whose

TABLE II: Frequency of different API check patterns.
Pattern 1 & 2 Pattern 3 Pattern 4 Total

#APP 503 (78.0%) 249 (38.6%) 452 (70.1%) 645
#API 84,461 (86.1%) 8,072 (8.2%) 17,992 (18.3%) 98,137

usage needs to be checked is startForeground() (Line 19).
The app checks for the runtime SDK version by defining
and invoking a static method isBackgroundLocationAware()
(Line 18), where the result is returned as the constraint
condition of the “if” statement. With different return values,
the app would invoke different “overloading” forms of the
same API. Thus, if the runtime SDK version is greater than
or equal to 29, the API startForeground(int, notification, int)
would be invoked in CollectorService(), otherwise, another
API startForeground(int, notification) would be invoked. In
addition to storing the check results in a static method or a
variable, developers sometimes store the current SDK version
in static fields and reuse them in other classes as well.
Pattern 4: Try-catch check. This pattern is to invoke po-
tential incompatible APIs in a try-catch statement, which is
commonly used when developers use unfamiliar APIs in third
party libraries. For example, in Fig. 3, the API copy() (Line
32) is introduced at SDK level 26, which is wrapped in a
third party API CopyFiles() (Line 31). And developers need
to invoke it in a try-catch statement (Lines 25-28) to prevent
potential issues.

For the above four patterns, in addition to adding usage
patterns directly before calling the API, developers usually
use wrapper methods to check whether to invoke the API,
i.e., the constraint is checked in the callee methods that finally
would invoke the API. That is also one of the reasons why
the call path of an API is required to be extracted, and
the constraints along the path should be extracted as well.
As shown in Fig. 1, the API is invoked by the wrapper
method (i.e., writeGnssToFile()) with a static method check
(i.e., hasGrantedPermission()).

To investigate the frequency of each pattern in real-world
apps, we investigated 645 real word apps from the dataset [20]
by using FlowDroid [28]. Table II displays the result of the
645 apps and 98,137 API usages with check patterns extracted
from the apps. We can see the most commonly-used pattern
is direct check and ternary check, accounting for 86.1% of
API usage paths, and 78.0% apps use such a pattern at least
once to check the API usage constraint, while the static field
check and try-catch pattern account for 38.6% and 70.1%
in 645 apps, respectively. Developers may also use multiple
checking patterns to avoid compatibility issues in one API
usage path. Based on the 4 summarized API usage check
patterns, we then illustrate the mechanism of how to analyze
the constraint semantics in them along with each API call path
in the following path-sensitive analysis section.

2) Path-sensitive Analysis: For different paths with dif-
ferent types of API usage check patterns, we first need to
separately extract the constraints in each path. Since there may
be several SDK version checks (i.e., constraints) along the
path, we thus resolve them to investigate whether there exist
SDK version checks before invoking APIs, and what exactly

261

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

the semantics of the constraints are.
For each API call path, to extract the semantics of SDK

version checks from the four usage patterns, we first record
the variables and static methods related to SDK version
checks, and extract the context of each variable and static
method by extracting the relevant constraints. Specifically,
in each method, we first generate the Control Flow Graph
(CFG) [30], and extract the patterns for each method call.
We employ different analysis strategies for different patterns.
For Direct check and Ternary expression check, they are
both converted to a branch structure, and PSDroid records
where Build.VERSION.SDK INT is defined or used, and the
constraint in the branch, such as the constraint SDK INT
>= 23 (Line 3) in Fig. 3. In fact, there is no difference
in handling these two patterns at bytecode level with SOOT
[27]. We categorize them into two types because they are
summarized from the source code of real-world apps, where
they are totally different. It is worth mentioning that source-
code-level analysis tools such as ACRYL [13] and ACID [16]
only considered Direct check and neglected Ternary expression
check, which would miss the semantics in the latter pattern.

For Static field check, since the API usage constraint
may be in various forms, the semantics of different forms
of patterns should be extracted and recorded in different
ways. To achieve it, PSDroid identifies and records SDK
check-related static variables and static methods. For static
variables, PSDroid identifies how these variables are defined
or used. Typically, such static variables are usually defined
to store the comparison results of the runtime SDK and
a specific SDK version, for example, “public static
boolean RuntimeSDK = Build.VERSION.SDK_INT
>= 19”. For static methods, PSDroid focuses on the return
value to observe whether SDK check-related results are re-
turned to the caller method. The returned result is typically
used as the constraint to invoke a specific API. For exam-
ple, “return Build.VERSION.SDK_INT >= 29”. For
Try-catch check, PSDroid first identifies the instruction that
invokes incompatible APIs and then recognizes whether it is
in the block of a try-catch structure by traversing the CFG.
We assume that all exceptions would be caught by default if
the API induces errors.

After identifying different types of patterns, PSDroid per-
forms a CFG-based analysis to match them with the API or
the wrapped method in the path. Note that there may be a
complicated situation where one API is invoked several times
in a single method, but with different forms of SDK version
checks. In this case, PSDroid extracts patterns for each call
separately. In this way, PSDroid can extract the SDK check-
related patterns for each path.

Taking the example in Fig. 1 for illustration, PSDroid
obtains two resolved API usage paths for the API getRangeS-
tate(), as shown in Fig. 4. In each method, the constraint
related to SDK version checks is extracted. The constraint in
the method isCarrierSupported() (Line 7) is “>=28”, which
is extracted from a ternary expression check. The constraint
in the method onGnssReceived() (Line 11) is “<28”, which

isCarrierSupported()

 >=28

writeGnssToFile()

 Null

onGnssReceived()

 <28

getRangeState()

 >=18, <=31

getRangeState()

 >=18, <=31

Path 1：

Path 2：

Fig. 4: An example of resolved API usages.

is extracted from a static method check. “Null” indicates
no SDK-related checks in the method. Besides the patterns
along the path, for the end of each path, the minimum and
maximum SDK versions of the app will also be extracted
(i.e., 18 and 31) and used as the default runtime SDK version
range of the target API getRangeState(). In the next section,
the resolved SDK version range of each API will be extracted
and compared with the API lifetime, in order to identify the
incompatibility issues.

C. API Lifetime Modeling
The lifetime of an API indicates the time interval that the

API is introduced and deprecated in the Android framework,
which is also the basis for identifying API incompatibility
issues. In this paper, we consider the SDK versions from 1∼31
since the latest version that provides API declarations is 31
(Android 12.0), and automatically model the lifetime of each
API. To identify APIs, PSDroid first analyzes API declarations
for each SDK version based on Android documents [21].
However, different declarations may refer to APIs with the
same semantics but with different declarations [31], [32]. Such
inconsistency may introduce false alarms for API compatibility
detection based on API lifetime, thus, we need to identify
such different APIs, treat them equally (i.e., unify them to one
API), and update the lifetime of each API based on the SDK
documentation [33]. Consequently, we summarize 4 types of
such API updates as follows.
Annotation. Since SDK version 29, some APIs are declared
with annotation (e.g., @LayoutResint) to indicate the attribute
of their parameters, however, there are actually no differ-
ences when using these APIs. By investigating the Android
documentation, we find two typical types of annotations: (1)
Replacement, where some parameters of the API are directly
replaced with annotation. For example, as shown in Fig. 5,
in SDK version 1∼28, the API setContentView(int) (Line 2)
is declared with the parameter int. While since SDK version
29, this parameter has been replaced with @LayoutResint.
(2) Prefix, where some parameters of the API are annotated
with a prefix. For example, the API ColorStateList: void
<init>(int[][],int[]) (Line 3) in Fig. 5 is declared with pa-
rameters (int[][],@ColorInt int[]) (Line 5) since SDK version
29, indicating the attribute of the second parameter is Col-
orInt. We unify these parameters by replacing or deleting the
annotations, and update the lifetime of APIs accordingly, e.g.,
the lifetime of setContentView(int) is updated to 1∼31.
Return value type. The Android framework introduces Kotlin
[23] in SDK version 29 as the programming language for
Android apps, although there is no difference in analyzing apps
written in Java and Kotlin at the bytecode level, some APIs
with the same semantics are written in different names/forms

262

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Augmentation types of API lifetime.

and should be taken into consideration to accurately model
the API lifetime. For example, the API subSequence(int, int)
(Line 7) in Fig. 5 declares that the data type of its return
value is java.lang.CharSequence in SDK version 1∼28, while
it has been changed to CharSequence since SDK version 29
(Line 8). Similarly, java.lang.Runnable evolves to Runnable,
java.lang.Iterable evolves to Iteratable, etc. PSDroid unifies
these forms and updates the lifetime of the related APIs
accordingly, e.g., the lifetime of the API subSequence(int,
int) is updated to 1∼31. Such reduced class naming will
affect the lifetime modeling of APIs, if not correctly modeled,
different forms of the same API will be regarded as two APIs
with different lifetimes, which would cause false alarms for
lifetime-based methods.
“Extends” method and generics. Some API methods are
reorganized to explicitly indicate the super class by using
“extends”, or use generic data types as their variable argu-
ments, which challenges the reliability of the API lifetime.
For example, in Fig. 5, the API tryTransfer(...) (Line 12)
declares that its methods extend the class BlockingQueu in
SDK versions 29 to 31. Similarly, for API findViewById (Lines
16, 17), it employs the generic type T after SDK version
26 but the actual semantic and usage of this API remains
unchanged. PSDroid unifies them as well and updates the
lifetime accordingly.

Based on the above 4 types of API updates, PSDroid
models the API lifetime automatically. Specifically, PSDroid
first extracts all API declarations of API levels 1∼31 from
Android documents [21] and stores them in lists Li where
i = 1, · · · , 31, representing the API level. It then updates
the declaration of each API in Li according to the above 4
features by string mapping and replacement, e.g., replacing the
API declaration CharSequence with java.lang.CharSequence
in Lj(j = 29, 30, 31). To specify the lifetime of each API,
PSDroid traverses all the APIs involved in API levels 1∼31,
checks the existence of each API in each API level Li, and fi-
nally obtains the introduced SDK version and deprecated SDK
version of each API to systematically model their lifetimes.

D. API Compatibility Issue Detection

Based on the extracted SDK-related patterns along each path
and the augmented lifetime of each API, in this section, we
aim to identify whether the app has potential incompatibility
issues by comparing the runtime constraints of SDK versions
to invoke the APIs and the lifetime of APIs. Specifically,
for each path (path) resolved in § IV-B, the target API is

denoted by api, PSDroid first solves the patterns extracted in
path. If there exists a solution that satisfies the constraints,
we record it as the runtime range of the SDK versions for
invoking api, denoted by Rruntime, and the actual lifetime of
api is denoted by Rlife. If Rruntime ⊈ Rlife, which means
the app may run on a SDK version v where v ∈ Rruntime

while v /∈ Rlife, causing incompatibility issues when calling
api. PSDroid identifies such incompatibility issues and further
reports how and where this issue occurs by computing the
difference set between Rruntime and Rlife to localize the root
cause. For example, for Path 2 shown in Fig. 4, the intersection
of the extracted runtime API usage is [18, 28) and the lifetime
of the target API is [24, 31]. Since [18, 28) ⊈ [24, 31], PSDroid
would report an issue, because the app may be run on devices
with SDK version 18∼23 where the API getRangeState()
has not been introduced but invoked, which would cause
incompatibility issues.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of PSDroid by
answering the following research questions:
RQ1: Can PSDroid detect different types of API compatibility
issues?
RQ2: Can PSDroid effectively detect API compatibility is-
sues?
RQ3: Can PSDroid outperform existing tools in detecting API
compatibility issues?
RQ4: What is the feedback in terms of the issue reports of
PSDroid?

A. RQ1: Detection Ability of PSDroid

Setup. In this experiment, we build a ground truth dataset
containing 12 apps that cover different types of compatibility
API usages, as shown in Table III. The first six apps come
from the CID benchmark dataset [10], and the remaining
ones are constructed with four types of compatibility API
usage check patterns: (1) Basic with unrelated If-then, where
there is indeed an “If-then” check about the SDK version,
while the issue-induced API (e.g., AlarmManager.setExact) is
actually not protected by the “If-then” check after analyzing
the CFG of the method. (2) Wrong If-then protection, where
the condition in the “If-then” check is incorrectly set to protect
the issue-induced API. (3) Static protection, where the issue-
induced API is protected by a static field. (4) New API, where
the API (e.g., CellSignalStrengthNr.getCsiRsrp) is introduced
in recent API levels. We compare the detection results of
PSDroid with the state-of-the-art lifetime-based tools (i.e.,
CID, IctAPIFinder), which has been demonstrated to be more
effective than app-based tools [20].
Result. Table III shows the comparison results. PSDroid
resolves all incompatible API usages while CID and Ic-
tAPIFinder correctly resolve six usages (marked with ⊛ and
⃝), and they both report three false positives and three false
negatives, whose precisions are 100%, 62.5%, 62.5% and
recalls are 100%, 62.5%, 62.5%, respectively. The main reason
for the false negatives is that CID did not perform the CFG

263

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparison results of existing tools on the ground truth
apps. ⊛: true issue; ∗: false issue;⃝: no issue; ∅: missed issue.

App Relevant API CID IctAPIFinder PSDroid
Basic AlarmManager.setExact ⊛ ⊛ ⊛
Forward AssetInputStream.getAssetInt ⊛ ∅ ⊛
GenericType TreeMap.replace ⊛ ∅ ⊛
Inheritance transitionManager.go ⊛ ⊛ ⊛
Varargs KeyProtection.Builder.<init> ⊛ ⊛ ⊛
If-then protection AlarmManager.setExact ⃝ ⃝ ⃝
Basic with unrelated If-then AlarmManager.setExact ∅ ⊛ ⊛
Wrong If-then protection Webview.getWebViewClient ∅ ⊛ ⊛
Static method protection VibratorManager.vibrate ∗ ∗ ⃝
Static variable protection VibratorManager.vibrate ∗ ∗ ⃝
Try-catch protection Files.copy ∗ ∗ ⃝
New API CellSignalStrengthNr.getCsiRsrp ∅ ∅ ⊛
#True Positives - 6 6 12
#Precision - 62.5% 62.5% 100%
#Recall - 62.5% 62.5% 100%

analysis on each method (i.e., Basic with unrelated If-then)
and semantic analysis on the API usage check patterns (i.e.,
Wrong If-then protection). For IctAPIFinder, the reason for the
false negatives is the lack of lifetime knowledge of the specific
APIs. The main reason for all the false positives is that CID
and IctAPIFinder did not consider different implementations
of API check patterns.

Answer to RQ1: PSDroid can effectively detect different
types of compatible API usages, achieving 100% precision
and 100% recall rate on our ground truth dataset, where the
precisions of CID and IctAPIFinder are 62.5% and 62.5%,
and the recalls are 62.5% and 62.5%, respectively. It indi-
cates PSDroid outperforms state-of-the-art incompatibility
issue detection tools.

B. RQ2: Effectiveness of PSDroid

Setup. To evaluate the effectiveness of PSDroid, we exploit
it to detect API compatibility issues on a baseline dataset
built from the AndroidCompass dataset [22]. Specifically, we
manually checked 1,200 changes in AndroidCompass to build
the dataset. To obtain the apps with API compatibility issues,
we first extract the commits that only revise one line of code
in a method, which might probably revise compatibility issues
from our experience, and manually verified the changes to
ensure they were modified to check the SDK version. Finally,
we obtained the versions before and after the commit to
construct our baseline dataset (with 36 commits from 30 app
updates), as shown in Table IV.

Based on the constructed dataset, we use PSDroid to detect
compatibility issues in both old and new versions of the apps,
and the detected issues are recorded and analyzed separately.
We classify all detected API compatibility issues into three
groups to conduct an in-depth analysis. (1) “Without Checks”:
which represents the issues that have no SDK version checks
at all for all the related API invocations. (2) “Partial Checks”:
which represents the issues that have correct SDK version
checks in some of the invoking paths, but fail to protect API
usages in all invoking paths. (3) “Incorrect Checks”: which
denotes the detected issues with incorrect SDK checks for all
related API invocations.
Result. Table IV shows the detection results, where “Fixed”
and “Newly Introduced” denote the numbers of issues fixed
and newly introduced in the new version, respectively. Note
that an app update may include both new functions and fixed
issues, as well as new issues introduced by new functions. As

shown in Table IV, PSDroid detected 347 API incompatibility
issues (i.e., 98 newly-introduced + 249 remained issues) on
the new versions of 30 apps, and 361 issues (i.e., 112 fixed
+ 249 unfixed issues) on the old versions. Overall, it can be
seen that more than half of the detected issues (i.e., 78.39%)
are caused by “Without Checks”, indicating a majority of API
incompatibility issues have not been noticed by developers.
Besides, we observe that the number of detected issues with
partial checks is larger than that of issues with incorrect checks
in all the usage paths, and the number of those two issues
in new versions is also larger than those in old versions. A
possible reason is that although some developers are aware of
API compatibility issues, they lack the information to locate
and correctly fix related issues.

To validate the correctness of issues detected by PSDroid,
we further sample 25% compatibility issues of each app (i.e.,
177 issues in total) and manually check whether the APIs
are correctly used without incompatibility issues. It is found
that ALL the extracted API usage paths are correct, while
11 detected issues (6.2%) in specific paths are false positives
due to the inconsistency between the declared APIs in the
declaration file of each SDK version and the APIs that can be
used in each SDK version from the Android documentation.
For example, the API View: String toString() is not declared
in SDK frameworks before 17, while it can be invoked before
version 17 from the Android documentation. Since the API
lifetime is modeled based on the declaration of each SDK,
such inconsistencies may occur and cause false positives.

Answer to RQ2: PSDroid can effectively detect API
incompatibility issues with high precision (93.8%) on our
dataset. Besides “without checks”, the other two types of
issues (i.e., partial checks and incorrect checks) are also
prevalent which can be uniquely detected by PSDroid.

C. RQ3: Comparison with Existing Tools

Setup. To demonstrate the tool advantages compared with the
existing incompatibility detection tools, we compare PSDroid
with five existing approaches (i.e., FicFinder [9], CID [10],
IctAPIFinder [11], CIDER [12], and ACRYL [13], [14]) on
645 real-world apps, which are collected in [20]. Note that the
dataset is a partial ground truth dataset, which means that these
apps have compatibility checking functions but are unable
to be verified whether the checking is correct or not. Other
tools listed in Table I are not used since they are either not
publicly available or we did not get a reply from the authors.
Note that, since CID was published a few years ago with
API lifetime modeled based on SDK versions 1∼25, to make
a fair comparison, we upgrade CID (denoted by CID+) by
augmenting the SDK versions as 1∼31 (the same as PSDroid).
Due to the limitation of each tool (e.g., cannot be processed
by the underlying tool or causing out-of-memory errors), some
apps cannot be successfully analyzed. Therefore, we record
and compare the success rate of the analysis and the detected
issues and the time cost of PSDroid on analyzing apps.
Result. Table V shows the comparison results with existing
tools, where PSDroid ALL represents the incompatible API

264

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Detection results of PSDroid.

App Name Old
Version

Issues Detected by PSDroid New
Version

Issues Detected by PSDroid
#Fixed #Newly

IntroducedAll Without
Checks

Partial
Checks

Incorrect
Checks All Without

Checks
Partial
Checks

Incorrect
Checks

App Manager 2.5.21 19 19 0 0 2.5.22 25 24 0 1 1 7
Step and Height counter 1.3 0 0 0 0 1.5 0 0 0 0 0 0
Step and Height counter 1.22 15 14 0 1 1.3 0 0 0 0 15 0
App Manager 2.5.20 15 15 0 0 2.5.21 19 19 0 0 0 4
WiGLE WiFi Wardriving FOSS 2.51 5 1 1 3 2.6 5 1 1 3 0 0
GPSTest 3.9.1 0 0 0 0 3.9.2 0 0 0 0 0 0
microMathematics Plus 2.20.1 6 6 0 0 2.21.0 7 7 0 0 0 1
Tusky 12.1 1 1 0 0 13.1 2 1 1 0 1 2
ProtonVPN 2.4.31.0 18 17 0 1 2.6.0.0 2 2 0 0 17 1
Termux Tasker 0.4 2 2 0 0 0.5 0 0 0 0 2 0
VirtualXposed 0.20.2 1 1 0 0 0.20.3 2 2 0 0 0 1
GPSTest 3.8.4 0 0 0 0 3.9.0 0 0 0 0 0 0
Limbo x86 PC Emulator 4.1.0 2 0 2 0 5.0.0 1 1 0 0 2 1
Nextcloud 3.14.1 15 13 0 2 3.15.1 18 17 0 1 3 6
VirtualXposed 0.19.0 1 1 0 0 0.20.2 1 1 0 0 1 1
RedReader 1.14 6 6 0 0 1.15 6 6 0 0 0 0
Simple Keyboard 74 4 4 0 0 75 4 4 0 0 0 0
Tower Collector 2.5.1.68 16 15 0 1 2.6.0.69 3 2 0 1 14 1
Mupen64Plus AE 3.0.87 12 11 1 0 3.0.246 10 9 0 1 8 6
Telegram FOSS 7.1.3 42 38 4 0 7.2.1 54 50 4 0 0 12
AntennaPod 2.1.4 11 11 0 0 2.2.0 10 9 0 1 3 2
Pocket Paint 2.7.0 7 7 0 0 2.7.1 3 3 0 0 4 0
Presence Publisher 2.1.1 50 19 24 7 2.2.0 63 27 26 10 4 17
App Manager 2.5.15 10 10 0 0 2.5.16 16 15 0 1 0 6
DSub 5.5.0 14 13 1 0 5.5.1 14 9 5 0 3 3
DSub 5.4.4 34 30 4 0 5.5.0 19 8 11 0 22 7
SkyTube 2.973 3 1 0 2 2.974 4 3 0 1 0 1
Shelter 1.5.1 0 0 0 0 1.6 0 0 0 0 0 0
Presence Publisher 2.0.0 39 19 15 5 2.1.0 46 20 15 11 7 14
BiglyBT 1.2.6.6 13 9 2 2 1.3.0.2 13 10 0 3 5 5
Total 361 283 54 24 347 250 63 34 112 98
Average 12.03 9.43 1.80 0.80 11.57 8.33 2.10 1.13 3.73 3.27
Percentage 100.00% 78.39% 14.96% 6.65% 100.00% 72.05% 18.16% 9.80% - -

TABLE V: #Issues detected by existing tools and PSDroid. #Succ. Apps: the number of apps that are successfully analyzed.

- App-based methods API lifetime-based methods
PSDroidALL PSDroid

FicFinder CIDER ACRYL CID CID+ IctAPIFinder
#Succ. Apps (rate) 587 (91.0%) 623 (96.6%) 596 (92.4%) 409 (63.4%) 416 (64.5%) 407 (63.1%) 643 (99.7%) 643 (99.7%)
#Apps with issues 132 22 195 341 375 353 562 481
#Issues 167 30 259 20,642 24,722 4,287 49,211 3,408

usages in the main code of apps, third-party libraries, and dead
code in apps, while PSDroid represents issues that occur only
in the main code of the apps. As we can see, PSDroid success-
fully analyzed almost all the apps, achieving a 99.7% success
rate and outperforming others. CID and IctAPIFinder perform
the worst, achieving only 63.4% and 63.1% success rates. For
CID, the reason may be that it restores intermediate results
which may cause an out-of-memory error when processing
complex apps. For IctAPIFinder, the reason came from the
limitation of Soot (old versions of Soot in particular). PSDroid
detected 3,408 compatibility issues in 481 out of 643 apps,
which is less than the number of issues in other lifetime-based
tools (i.e., 24,722 issues in 375 apps by CID+, 4,287 issues in
353 issues by IctAPIFinder). This might indicate that PSDroid
can precisely and effectively detect compatibility issues, which
will be discussed in the following FN analysis. For app-based
tools, the number of apps with issues and detected issues
(i.e., CIDER detected 30 issues in 22 of 632 apps) is far less
than lifetime-based tools, which confirms that it is essential
to model all API lifetime to harvest incompatible APIs so
as to support automated detection of compatibility issues in
Android apps [20]. On average, PSDroid takes 70.3 seconds
per app for analysis, which is comparable to existing related
tools [9]–[11], [13], [16].

To make the results clearer, we highlight the comparison
results in Fig. 6(a) and Fig. 6(b), where Fig. 6(a) shows
the comparison between app-based detection approaches (i.e.,
FicFinder, CIDER, and ACRYL) and PSDroid, while Fig. 6(b)

shows the comparison between the API lifetime-based ap-
proaches (i.e., CID+, IctAPIFinder) and PSDroid. As a result,
PSDroid covers the most overlap issues (i.e., 7 issues with
FicFinder (4.2%), 42 issues with ACRYL (16.2%), 752 issues
with IctAPIFinder (26.1%), 595 issues with CID+ (3.0%))
while reducing many potential false positives (i.e., 18,906
issues in CID+ (96.6%), 2,057 issues in IctAPIFinder (71.4%))
and many potential false negatives (i.e., 359 issues only
detected by PSDroid (22.1%)). In addition to demonstrating
the overlap and discrepancy of PSDroid with the other 5
existing approaches, we manually checked the discrepancy
issues between PSDroid and other tools to investigate the FP
and FN reasons.
Comparison with app-based approaches. We can see from
Fig. 6(a) that there is only 7 overlapped issues between
FicFinder and PSDroid and 42 overlapped issues between
ACRYL and PSDroid, which are all caused by without check.
Except the overlapped issues, the other issues detected by
ACRYL and FicFinder contain many false positives, which
are validated by manually investigating the constraint checks
in the invoking paths. The first root cause for the false positives
of ACRYL and FicFinder is that these detected incompatible
APIs are in the third-party libraries and meanwhile not invoked
by main packages. Another reason is that neither of them
correctly recognize the version check semantics. For example,
the app, WiGLE [34], uses a static field check to check the
runtime SDK version, while both tools considered there is no
check before invoking the API checkSelfPermission() and thus

265

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

IctAPIFinder
(2,881)

PSDroid
(1,627)

+
(19,573)

79

359

2,057 18,906
673 516

72
30

PSDroid
(3,408)

3,359160 217427

(259)
FicFinder

(167)
(30)

a app- lifetime-

Fig. 6: Comparison with existing approaches.

report a compatibility issue, which is actually a false alarm.
Besides, the two app-based tools have many false negatives,
because they only take limited APIs into account instead of
the complete API lifetime, and the check patterns defined by
them may be easily outdated due to the rapid evolution of
the Android operating system. There is no overlapped issue
between CIDER and PSDroid, because CIDER can only detect
a few callback-related compatibility issues.
Comparison with API lifetime-based approaches. We ex-
cluded apps that cannot be successfully analyzed by three
lifetime-based approaches and the comparison results of the
remaining 292 apps are shown in Fig. 6(b). Among those
apps, CID+, IctApiFinder, and PSDroid have reported 19,573,
2,881 and 1,627 compatibility issues, respectively.
• FP analysis. From Fig. 6(b), we find that most of the
compatibility issues detected by CID+ are caused by “out-
of-path API usages” and the incompleteness of API lifetime
modeling. “out-of-path API usages” indicates the API is used
beyond a valid path, such as in a dead branch that cannot be
invoked by the main package, which will not induce runtime
issues in the apps. Most of the false positives introduced
by IctAPIFinder are caused by neglecting different checking
variants and the incompleteness of API lifetime modeling.
Specifically, (1) a large number of APIs are never directly or
indirectly invoked by the main packages (i.e., out-of-path API
usages), causing a great number of irrelevant issues. (2) Many
new features have a great effect on the API lifetime modeling,
which introduces false positives both in main packages and
third-party packages. (3) Another reason is that the detection
approaches did not consider different check patterns and would
mistakenly treat other types of check patterns as without
checks. In other words, the improvement on the types of
check patterns (§ IV-B1), the method of API lifetime modeling
(§ IV-C), and the path-sensitive analysis (§ IV-B2) in PSDroid
can significantly reduce false positives in the reported API
incompatibility issues.
• FN analysis. For the false negatives of IctAPIFinder and
CID+ in Fig. 6(b), we summarize four root causes as follows.
(1) Path-Insensitive. CID and IctAPIFinder did not perform a
semantic analysis of all types of API usage check patterns for
all the invoking paths. CID only employs one simple check
pattern (i.e., direct check), and if the runtime SDK version has
been checked in any of the paths to the API, it considers there
are no incompatibility issues. (2) Semantics Loss. CID only
checks if there is an SDK-related constraint before invoking
the API, without analyzing the semantics of the constraint,
i.e., the specific constraint such as “VERSION.SDK INT<28”.
If there is an SDK-related constraint, CID regards the API as

TABLE VI: Feedback from app developers.
APP #Stars Version IssueID Issue State Incompatible API

Music Player GO 1.1k v4.4.20 #383 Fixed onRequestPermissionsResult()
#463 Confirmed startActivityAndCollapse()

Owncloud 3.4k v2.20 #3736 Fixed isStreamMute()
Triger 105 v3.4.3 #73 Fixed onRequestPermissionsResult()
Anki-Android 5.3k v2.16alpha49 #10469 Confirmed onReceivedHttpError()
AmazeFileManager 4k v3.6.7 #3194 Responded setBlockModes()
MaterialFBook 126 V4.0.3 #235 Waiting getColor()
Gpstest 1.1k v3.9.16 #583 Confirmed asVerticalAccuracy()
Markor 2.2k v2.9.0 #1640 Confirmed now()

MicroMathematics 316 v2.22.0 #116 Waiting getTreeDocumentId()
#115 Waiting checkSelfPermission()

Osmeditor4android 262 v17.0.3.0 #1566 Confirmed showContextMenu()
AppManager 1.8k v3.0.0-alpha03 #687 Confirmed getNextBucket()
Phonograph 2.7k v1.3.5 #953 Waiting onApplyWindowInsets()

ConnectBot 1.9k v1.9.8 #1153 Waiting GetActiveNetworkInfo()
#1154 Waiting get()

AntennaPod 4.4k v2.6.2 #6009 Responded getConnectionInfo()
#6008 Responded GetActiveNetworkInfo()

OpenBoard 1.7k v1.4.3 #686 WaitingC invalidateOutline()
PSLab 2k v2.0.10 #2352 WaitingC getLong()
Pixiv Shaft 2.3k v3.2.21 #477 Waiting getDynamicShortcuts()
Forecastie 766 v1.2.11 #682 Waiting getActiveNetworkInfo()

Omni-Notes 2.4k v6.0.5 #863 Fixed getPackageName()
#864 Confirmed toggleSoftInput()

Open sudoku 314 v3.8.1 #10 Fixed requestApplyInsets()
Vanilla 922 v1.10 #1143 Waiting getJobId()
BikeSharingHub 11 v2.0.6 #40 Waiting onRequestPermissionsResult()

SuntimesWidget 226 v0.14.7 #620 Confirmed setBackgroundTintList()
#621 Fixed onVisibilityAggregated()

Runnerup 614 v2.4.5.0 #1119 Confirmed stopLeScan()
1 WaitingC : the issue caused a crash.

protected and would not cause incompatibility issues. (3) Lack
of CFG analysis. CID does not perform a control flow graph
(CFG) analysis to extract patterns. If there are two potential
incompatible APIs in one method (one with a constraint and
the other one without a constraint), CID mistakenly assigned
the first constraint to the second API. (4) Lack of API lifetime
knowledge. IctAPIFinder has no knowledge of features of
newly-introduced APIs, leading to an incomplete API lifetime.

Answer to RQ3: PSDroid outperforms existing tools in
alleviating false positives and false negatives. With path-
sensitive semantic analysis based on four usage patterns,
PSDroid can efficiently localize API usage paths invoked
by main package methods and resolve the accurate semantic
of usage patterns, which sharply reduces FPs (i.e., reducing
96.6% and 71.4% potential false positives in CID+ and
IctAPIFinder, respectively) and FNs (22.1% issues only
detected by PSDroid) in the experimental dataset.

D. RQ4: Feedback from App Developers

To evaluate the usefulness of PSDroid, we collected active
repositories used in existing studies [35], [36] from Github
and Gitlab, most of which with high stars are also available on
Google Play. We then analyzed their up-to-date versions with
PSDroid and have reported 30 issues to developers for their
feedback, as shown in Table VI. For each issue, we reported:
(1) the invoking path with incompatibility issues, (2) the root
cause, and (3) the repair suggestion. To avoid overwhelming
app developers, for each app, we submitted no more than two
errors. So far, 18/30 reported issues have been confirmed or
fixed. Remaining 12 issues are already confirmed by ourselves,
and waiting for responses from developers. Some instances are
shown as follows.
• Activity: void onRequestPermissionsResult() [23, 31]. This

API is in the app, Music Player GO [37], which is a video play
app and has 929 stars on Github. As shown in Fig. 7, the app
overrides this API to automatically receive request permission
results. However, the lifetime of onRequestPermissionsResult
is identified to be 23∼31, which may cause crashes if it

266

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: A fixed issue by Music Player GO.

is invoked on SDK version 21 or 22. The app developer
confirmed this issue [38] and fixed [39] it by adding a static
field check (Lines 3, 7) before invoking it (Line 4). This issue
is also detected [40] and fixed [41] in App Trigger [42].
• WebViewClient: void onReceivedHttpError() [23, 31]. This
API is in the app, Anki-Android [43], which is a spaced
repetition flashcard app to memorize things and has 4.7k stars
on Github. It overrides this API to display a “help” page in
case of missing images (e.g., a 404 from the resource that was
attempted in the WebView) in the method onReceivedHttpEr-
ror(). The minimum SDK version to run it is 21. However,
the lifetime of this API is 23∼31, which would introduce
incompatibility issues when the app runs on devices with
SDK version 21 or 22. The app developer confirms this issue
on GitHub [44] and appreciates us providing such a static
analyzer that outperforms existing tools (i.e., precise invoking
path and root cause) to help them localize this issue.
• Builder: Builder setBlockModes() [23, 31]. This API is in
the app, AmazeFileManager [45], which is a file manager app
and has 3.8k stars in Github. The minimum SDK version to
run this app is 14, while the API is introduced in SDK version
23. The developer confirmed on Github [46] that they did
not add an SDK version check when invoking this API. And
they temporarily make a workaround (i.e., add an annotation
@RequiresApi(api = 23)) to suppress compiling warnings,
which might also cause an unpredictable crash [47].

Besides the fixing solutions from developer feedback, we
also investigate some common fixing practices. (1) Add con-
ditional check. In some cases, developers only add an SDK
check for one of the paths instead of all the API usage
paths, which may still result in incompatible API usages in
other invoking paths. For example, from GPSTest 3.9.1 to
3.9.2 [25], VERSION.SDK INT >= 28 is added to fix the
issue [48] related to getRangeState, however, it still results
in an incompatibility issue with partial checks. (2) Delete
API usages with incorrect checks. We find some developers
delete incorrect checks together with the incompatibility API
usage to fix issues. From OpenBoard 1.4.2 to 1.4.3 [49], an
API usage with an incorrect check was deleted [50] to fix
the issue related to the API hasGlyph(java.lang.String). From
our observation, deleting the code containing incompatible
API usage is a common practice for developers to fix API
incompatibility issues. 15 issues were fixed in this way from
Dsub 5.4.4 to 5.5.0 [51].

Answer to RQ4: Some of the detected issues are confirmed
by developers, and while the fixing solutions vary, some
even introduce new incompatibility issues. Developers tend
to simply add a check or delete incompatibility API usages.

VI. DISCUSSION

Limitations. First, since PSDroid is built on the static analysis
framework, Soot [27], it inevitably inherits limitations from
Soot, such as the inability to handle reflective calls, native
code, and multi-threading features, and thus cannot recognize
unresolved types in Soot. Besides, currently PSDroid is not
equipped with the ability to eliminate the “dead” invoking
paths from the dead code. In other words, if some dead code
in the app invokes an API without any check, PSDroid would
report an issue. In fact, this should not be an issue since
it is not actually invoked by the app. Another limitation is
that PSDroid cannot solve complex patterns when computing
the runtime SDK version range for a specific API, such as
combined constraints within a single condition.
Threats to Validity. The validity of this study may be subject
to some threats. (1) The accuracy of API lifetime modeling.
PSDroid models API lifetime based on an API document
maintained by Google, which contains the definitions of public
methods in each SDK version [21]. However, it is found that
there may exist inconsistencies between the API document and
the Android framework code occasionally. For instance, in the
document, the API isEmpty() was deleted after SDK version
29, but in the framework code, it is not deprecated [52], which
may result in false positives in PSDroid. (2) The bias of
manual analysis. Since there exists no ground truth real-world
dataset for API compatibility issue detection, we manually
checked 1,200 code changes to build an up-to-date dataset
that might have bias. Similarly, to validate the correctness of
issues detected by PSDroid, we sampled 25% compatibility
issues for each app and manually checked them for evaluation.
Although manual analysis might introduce bias, we mitigate
it by three authors cross-validating the benchmark dataset and
the experimental results.

VII. CONCLUSION

In this paper, we propose PSDroid, a path-sensitive se-
mantic analysis approach for automated detection of API
compatibility issues in Android apps. PSDroid models the
lifetime of framework APIs, extracts relevant API invoking
paths with four usage patterns, concludes three types of API
compatibility usage issues, and localizes incompatible API
usages. Experiment results demonstrate the effectiveness of
PSDroid and the superiority over existing tools in reducing
false positives and false negatives. 18/30 reported issues are
also confirmed by developers.

VIII. DATA AVAILABILITY

The tool, experimental dataset, and results are publicly
available at https://github.com/PSDroid2022.

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural
Science Foundation of China (Grant No. 62102197, 62102284,
62202245), and the National Key Research and Development
Program of China (Grant No. 2018YFB1403400).

267

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Sto-
rydroid: Automated generation of storyboard for Android apps,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 596–607.

[2] S. Chen, L. Fan, C. Chen, and Y. Liu, “Automatically distilling sto-
ryboard with rich features for Android apps,” IEEE Transactions on
Software Engineering, 2022.

[3] J. Steele and N. To, The Android developer’s cookbook: building
applications with the Android SDK. Pearson Education, 2010.

[4] Google. (2022) Android API Levels. [Online]. Available: https:
//apilevels.com

[5] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the Android ecosystem,” in 2013 IEEE International
Conference on Software Maintenance. IEEE, 2013, pp. 70–79.

[6] P. Mutchler, Y. Safaei, A. Doupé, and J. Mitchell, “Target fragmentation
in Android apps,” in 2016 IEEE Security and Privacy Workshops (SPW).
IEEE, 2016, pp. 204–213.

[7] D. Guilardi, J. Nicácio, B. M. Napoleão, and F. Petrillo, “Are apps
ready for new Android releases?” in Proceedings of the IEEE/ACM 7th
International Conference on Mobile Software Engineering and Systems,
2020, pp. 66–76.

[8] T. Mahmud, M. Khan, J. Rouijel, M. Che, and G. Yang, “Api change
impact analysis for Android apps,” in 2021 IEEE 45th Annual Comput-
ers, Software, and Applications Conference (COMPSAC). IEEE, 2021,
pp. 894–903.

[9] L. Wei, Y. Liu, and S.-C. Cheung, “Taming Android fragmentation:
Characterizing and detecting compatibility issues for Android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, 2016, pp. 226–237.

[10] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in Android apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018, pp. 153–163.

[11] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding and
detecting evolution-induced compatibility issues in Android apps,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2018, pp. 167–177.

[12] H. Huang, L. Wei, Y. Liu, and S.-C. Cheung, “Understanding and
detecting callback compatibility issues for Android applications,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 532–542.

[13] S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, and
R. Oliveto, “Data-driven solutions to detect api compatibility issues in
Android: an empirical study,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
288–298.

[14] S. Scalabrino, G. Bavota, M. Linares-Vásquez, V. Piantadosi, M. Lanza,
and R. Oliveto, “Api compatibility issues in Android: Causes and
effectiveness of data-driven detection techniques,” Empirical Software
Engineering, vol. 25, no. 6, pp. 5006–5046, 2020.

[15] H. Xia, Y. Zhang, Y. Zhou, X. Chen, Y. Wang, X. Zhang, S. Cui,
G. Hong, X. Zhang, M. Yang et al., “How Android developers handle
evolution-induced api compatibility issues: A large-scale study,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 2020, pp. 886–898.

[16] T. Mahmud, M. Che, and G. Yang, “Android compatibility issue de-
tection using api differences,” in 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2021, pp. 480–490.

[17] S. A. Haryono, F. Thung, H. J. Kang, L. Serrano, G. Muller, J. Lawall,
D. Lo, and L. Jiang, “Automatic Android deprecated-api usage update
by learning from single updated example,” in Proceedings of the 28th
international conference on program comprehension, 2020, pp. 401–405.

[18] S. A. Haryono, F. Thung, D. Lo, L. Jiang, J. Lawall, H. J. Kang,
L. Serrano, and G. Muller, “Androevolve: Automated update for An-
droid deprecated-api usages,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). IEEE, 2021, pp. 1–4.

[19] Y. Zhao, L. Li, K. Liu, and J. Grundy, “Towards automatically repairing
compatibility issues in published Android apps,” in The 44th Interna-
tional Conference on Software Engineering (ICSE 2022), 2022.

[20] P. Liu, Y. Zhao, H. Cai, M. Fazzini, J. Grundy, and L. Li,
“Automatically detecting API-induced compatibility issues in Android
apps: a comparative analysis (replicability study),” in Proceedings
of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, jul 2022. [Online]. Available: https:
//doi.org/10.1145%2F3533767.3534407

[21] Google. (2022) APIs Declaration in Android framework base. [Online].
Available: https://github.com/aosp-mirror/platform frameworks base/
blob/android-11.0.0 r1/api

[22] S. Nielebock, P. Blockhaus, J. Krüger, and F. Ortmeier, “Androidcom-
pass: A dataset of Android compatibility checks in code repositories,”
in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 2021, pp. 535–539.

[23] Google. (2022) Calling java from kotlin, mapped types. [Online].
Available: https://kotlinlang.org/docs/java-interop.html#mapped-types

[24] M. Fazzini, Q. Xin, and A. Orso, “Automated api-usage update for
Android apps,” in Proceedings of the 28th ACM SIGSOFT international
symposium on software testing and analysis, 2019, pp. 204–215.

[25] (2021) Gpstest. [Online]. Available: https://github.com/barbeau/gpstest
[26] (2021) Gpstest. [Online]. Available: https://github.com/barbeau/gpstest/

blob/c1ffd27b536c71d1a459b34aeff7330e05c4df43/GPSTest/src/main/
java/com/android/gpstest/util/SatelliteUtils.java

[27] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[28] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[29] Google. (2021) Telegram foss. [Online]. Available: https://github.com/
Telegram-FOSS-Team/Telegram-FOSS

[30] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5, no. 7,
pp. 1–19, 1970.

[31] Google. (2022) Colorint, denotes that the annotated element represents
a packed color int. [Online]. Available: https://developer.android.google.
cn/reference/kotlin/androidx/annotation/ColorInt

[32] ——. (2022) Layoutres, denotes that an integer parameter, field
or method return value is expected to be a layout resource
reference. [Online]. Available: https://developer.android.google.cn/
reference/androidx/annotation/LayoutRes

[33] ——. (2022) Documentation for app developers. [Online]. Available:
https://developer.android.google.cn/docs

[34] (2021) Wigle wifi wardriving foss. [Online]. Available: https:
//github.com/wiglenet/wigle-wifi-wardriving

[35] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for
Android against real-world bugs,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2021.
New York, NY, USA: Association for Computing Machinery, 2021, p.
119–130. [Online]. Available: https://doi.org/10.1145/3468264.3468620

[36] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and Z. Su,
“Fully automated functional fuzzing of Android apps for detecting non-
crashing logic bugs,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
oct 2021. [Online]. Available: https://doi.org/10.1145/3485533

[37] (2021) Music-player-go. [Online]. Available: https://github.com/
enricocid/Music-Player-GO

[38] PSDroid. (2022) Detected issues in music player go. [Online].
Available: https://github.com/enricocid/Music-Player-GO/issues/383

[39] M. P. GO. (2022) Fixing issues in music player go.
[Online]. Available: https://github.com/enricocid/Music-Player-GO/
commit/c348d2e7a3775181d68cc06bfdc89d8c3e1a15aa

[40] PSDroid. (2022) Detected issues in trigger. [Online]. Available:
https://github.com/mwarning/trigger/issues/73

[41] Trigger. (2022) Fixing issues in trigger. [On-
line]. Available: https://github.com/mwarning/trigger/commit/
b03385a69b488cadf9f077f06233118506253f3d

[42] (2021) Trigger. [Online]. Available: https://github.com/mwarning/trigger
[43] (2021) Anki-android. [Online]. Available: https://github.com/ankidroid/

Anki-Android
[44] PSDroid. (2022) Detected issues in anki-android. [Online]. Available:

https://github.com/ankidroid/Anki-Android/issues/10469
[45] (2021) Amazefilemanager. [Online]. Available: https://github.com/

TeamAmaze/AmazeFileManager
[46] PSDroid. (2022) Detected issues in amazefilemanager. [Online]. Avail-

able: https://github.com/TeamAmaze/AmazeFileManager/issues/3194

268

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

[47] ssynhtn. (2018) Requiresapi vs targetapi -Android annotations.
[Online]. Available: https://stackoverflow.com/questions/40007365/
requiresapi-vs-targetapi-android-annotations/50578783#50578783

[48] GPStest. (2022) Fixing issues in gpstest. [On-
line]. Available: https://github.com/barbeau/gpstest/commit/
59b8c7e8046e87e9678dfa546c1372c1991d62f5

[49] (2021) Openboard. [Online]. Available: https://github.com/dslul/
openboard.git

[50] OpenBoard. (2022) Fixing issues in openboard. [On-
line]. Available: https://github.com/openboard-team/openboard/commit/
23286e0e24ce13e917b92130136164adaa0bb0da

[51] (2021) Dsub. [Online]. Available: https://github.com/daneren2005/
Subsonic.git

[52] Google. (2022) Vector defination. [Online]. Available: https://developer.
android.google.cn/reference/java/util/Vector?hl=en#isEmpty()

269

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:24:58 UTC from IEEE Xplore. Restrictions apply.

